Formation and scission of the sulfur-sulfur bond: a new approach to reactions between sulfur/polysulfide ions and thiolate ions/disulfides in N,N-dimethylacetamide

Gérard Bosser, Meriem Anouti and Jacky Paris*

Laboratoire de Physicochimie des Interfaces et des Milieux Réactionnels UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France

The reactivity of sulfur towards a series of thiolate ions RS⁻ [R = phenyl (1), 4-methylphenyl (2), benzyl (3) ethyl (4), propyl (5), butyl (6), sec-butyl (7), tert-butyl (8)] has been studied by spectroelectrochemistry in N,N-dimethylacetamide. Apparently, sulfur reacts in two parallel ways: (i) oxidation of RS⁻ leading to RS₂R and S₃⁻⁻ ions; (ii) preponderant S-nucleophilic process yielding stable RS_x⁻ ions (x = 2-5). RS_x⁻ species, whose spectrophotometric characteristics have been determined, are successively obtained in the course of sulfur addition with R = alkyl, whereas equilibria between arylpolysulfide ions were observed. At the junction of these two parallel pathways, the slow keyequilibrium $2RS_4^- \implies RS_2R + 2S_3^{--}$ has been investigated by addition of RS₂R R = 1-8 to S₃⁻⁻ solutions. In fact, our study is consistent with at first, a monoelectronic transfer between RS⁻ (or RS₂⁻) ions and the very reactive S₂ molecules in equilibrium with S₈. The fast and competing couplings of the radicals RS' (or RS₂⁻), S₂⁻⁻ (or S₃⁻⁻) agree with the simultaneous formation of RS₂R, RS_x⁻⁻ and polysulfide ions. More generally, the S₂/S₂⁻⁻ redox system is believed to be involved in thiophilic reactions of a number of anions such as RS⁻ towards sulfur rather than the initial opening of the cyclic S₈ form.

Alkyl polysulfide[†] ions RS_x^- ($x \ge 2$) are known as transient species in the synthesis of RS_nR' compounds,¹ from inorganic polysulfides $S_x^{2^-}$ and alkyl halides, from monoorganic polysulfanes and various electrophilic reagents, from sulfenylthiocarbonates or S-alkylthiosulfates (x = 2, n = 3). We recently showed² that aryldisulfides ArS_2^- are stabilised in dimethylacetamide (DMA), an aprotic dipolar medium. These ions were obtained from sulfur and a set of aromatic thiolates by reaction (1). Sulfur further oxidizes ArS_2^- ions [reaction (2)]

$$\operatorname{ArS}^{-} + \frac{1}{8} \operatorname{S}_{8} \rightleftharpoons \operatorname{ArS}_{2}^{-}$$
 (1)

$$2\operatorname{ArS}_2^- + \tfrac{1}{2}\operatorname{S}_8 \Longrightarrow \operatorname{ArS}_2\operatorname{Ar} + 2\operatorname{S}_3^{-} \qquad (2)$$

with at first the fast appearance of the characteristic blue anion radical S_3^{-} which then slowly decreases in concentration. Using a series of di-alkyl and -phenyldisulfides, we previously proposed ³ that RS₂R and S₃⁻ yield a RS₂R-S₆²⁻ complex whose structure has not been elucidated [reaction (3)].

$$RS_2R + 2S_3^{*-} \stackrel{k}{\longleftrightarrow} RS_2R - S_6^{2-}$$
(3)

Reaction (3) appeared to us to be the slow shift of the equilibrium between S_3 ⁻ and S_6 ²⁻ to the benefit of the dimeric form in presence of RS₂R. When the synthesis was carried out² by addition of methyl iodide to a solution $[C_6H_5S^-]_0$ and $[S]_{ad}$ ($[S]_{ad} = 8[S_8]$) at $y = [S]_{ad}/[RS^-]_0 = 1.1$, the following mixture (mol%) was obtained: $C_6H_5SCH_3 = 12\%$; $C_6H_5S_2CH_3 = 65\%$; $C_6H_5S_3CH_3 = 10\%$; $\Sigma CH_3S_xCH_3 = 13\%$ and the proportion in $C_6H_5S_3CH_3$ increased by increasing y. With alkyl thiolates CH_3S^- or $C_2H_5S^-$, the oxidation by sulfur seemed to be dominating because S_3 ⁻⁻ was immediately detected.²

We report here on the general reactivity of sulfur towards the following aryl or alkyl RS⁻ ions in DMA: R = phenyl (1), 4-

methylphenyl (2), benzyl (3), ethyl (4), propyl (5), butyl (6), secbutyl (7), tert-butyl (8). To this purpose, the reactions between S_3 ⁻ ions and the corresponding disulfides $RS_2R R = 1-8$ will also be examined. The known electrochemical and spectrophotometric characteristics of the sulfur–polysulfide ions system,^{2,4} and those that we determined for species 1–8 enabled the reactions to be followed by UV–VIS absorption spectrophotometry coupled with classic voltammetry. The concept of 'Snucleophilicity' or 'thiophilicity'⁵ for the cleavage of the S–S bond of sulfur or polysulfide species by a number of anions such as RS⁻ will be questioned on the basis of our statements.

Results

Sulfur-polysulfide ions and thiolate ions characteristics in DMA The partial dissociation [reaction (4)] of cyclooctasulfur into S_2

$$S_8 \rightleftharpoons 4S_2$$
 (4)

molecules in DMA was recently proposed by our group from the results of two sets of experiments:⁴ (*i*) further studies of the disproportionation of S_8^{2-} ions; (*ii*) kinetics of the reaction between triarylphosphines and sulfur. The S_8 dissociation

$$K_1 (297 \text{ K}) = [S_2]^4 [S_8]^{-1} = 10^{-7} \text{ mol}^3 \text{ dm}^{-9}$$
 (5)

would attain 50% at $[S_8]_T^{\circ} = 1.5 \times 10^{-3}$ mol dm⁻³. The reduction of sulfur into polysulfide ions has been extensively studied in aprotic media.⁴ As in the same type of solvents (DMF, DMSO, CH₃CN *etc.*) the electroreduction of sulfur in DMA occurs in two bielectronic steps with respect to S₈ molecules^{4.6} (waves R₁, $E_{\pm} = -0.40$ V vs. ref. and R₂, $E_{\pm} = -1.10$ V, on a rotating gold-disc microelectrode). The disproportionation [reaction (7)] of the carmine-red S₈²⁻ ions

$$S_8 + 2e^- \longrightarrow S_8^{2-} \tag{6}$$

$$S_8^{2-} \rightleftharpoons S_6^{2-} + S_2 \tag{7}$$

[†] Alkyl polysulfide ion = alkylpolysulfanide.

Fig. 1 UV-VIS absorption spectra $(\epsilon_i/\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$ of S₈ (1), S₆²⁻ (2) S₈²⁻ (3) and S₃⁻⁻ (4) in dimethylacetamide[‡]

 $(\lambda_{max} = 515 \text{ nm}, \varepsilon_{515}^8 = 3800 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$ leads to the stable product of the electrolysis of sulfur at controlledpotential on the plateau of R₁, the blue anion radical S₃^{•-} $(\lambda_{max} = 617 \text{ nm}, \varepsilon_{617}^3 = 4390 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$. S₃^{•-} ions are in equilibrium (9) with their dimer S₆²⁻ $(\lambda_{max} = 465 \text{ nm},$

$$K_2 (297 \text{ K}) = [S_6^{2^-}][S_2][S_8^{2^-}]^{-1} =$$

4.0 × 10⁻⁵ mol dm⁻³ (8)

$$S_6^{2-} \rightleftharpoons 2S_3^{*-}$$
 (9)

$$K_3 (297 \text{ K}) = [S_3^{-}]^2 [S_6^{2}]^{-1} = 0.043 \text{ mol dm}^{-3}$$
 (10)

 $\varepsilon_{465}^6 = 3100 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$). S_8^{2-} and S_3^{*-} ions can be oxidized (O₁, $E_{\frac{1}{2}} = -0.20 \text{ V}$) and reduced (R₂, $E_{\frac{1}{2}} = -1.10 \text{ V}$) at the same potentials. The electrolysis of sulfur (reduction), or S_3^{*-} ($\Longrightarrow S_6^{2-}$) ions (oxidation) for several initial concentrations enabled spectra of S_8 , S_6^{2-} , S_3^{*-} , S_8^{2-} to be attained;^{2.4} they have been represented in Fig. 1. All these characteristics and the values of K_1 , K_2 and K_3 will be used for data treatment.

As was previously performed for the generation of the ArS⁻ species, thiolate ions were obtained by electrolysis at a controlled potential on a gold electrode of disulfides RS_2R^2 (1–4) or thiols RSH (3, 5–8). RSH reduces according to the totally irreversible reaction (11),⁸ whereas reduction of disulfides is

$$RSH + e^{-} \longrightarrow RS^{-} + \frac{1}{2}H_2 \qquad (11)$$

$$RS_2R + 2e \longrightarrow 2RS^-$$
 (12)

highly irreversible in neutral aprotic media.^{7,8} The electrochemical (E_4) and/or spectrophotometric $(\lambda_{max}, \varepsilon_{max})$ characteristics of RSH, RS₂R and those of RS⁻ ions are summarized in Table 1.

Reactivity of thiolate ions with sulfur

As an example (R = propyl), Figs. 2 and 3 show the general evolution of the UV–VIS spectra and voltammograms when a concentrated solution of sulfur was added to a solution of thiolate ions, $[RS^-]_o = 2.0 \times 10^{-3} \text{ mol dm}^{-3}$, with ratio y = 8 $[S_8]/[RS^-]_o = [S]_{ad}/[RS^-]_o$. As long as y remained less than *ca.* 4.5, the total consumption of sulfur was evidenced by the lack of its reduction wave R₁. The partial oxidation of RS⁻ ions according to the overall reaction (13) agrees with the

[‡] More accurate spectra of sulfur species than those previously reported ² (especially for S₈²⁻ ions) have been estimated in the course of recent electro-oxidations of S^{1/3-} solutions.⁴

1994 J. Chem. Soc., Perkin Trans. 2, 1996

Fig. 2 Evolution of UV-VIS spectra during the addition of sulfur to a solution of propylthiolate ions $[RS^-]_o = 2.0 \times 10^{-3} \text{ mol dm}^{-3}$. $y = [S]_{ad}/[RS^-]_o = 0$ (1); 0.25 (2); 0.50 (3); 1.20 (4); 1.80 (5); 2.80 (6); 3.1 (7). Thickness of the cell, 1 = 0.1 cm

Fig. 3 Evolution of voltammograms during the reaction of sulfur with propylthiolate ions. Same conditions as for Fig. 2. Rotating gold-disc electrode $\Omega = 1000$ rev min⁻¹, diameter = 2 mm; *E vs.* reference Ag/AgCl, KCl sat. in DMA-N(Et)₄ ClO₄ 0.1 mol dm⁻³

Fig. 4 Variation in A_{617} vs. time in the course of sulfur additions to propylthiolate ions $[RS^-]_o = 2.0 \times 10^{-3} \text{ mol dm}^{-3}$; y = 0.50 (1); 1.40 (2); 2.8 (3)

$$2RS^{-} + 3S_2 \longrightarrow RS_2R + 2S_3^{*-}$$
(13)

progressive appearance of S_3^{*-} ions. These species were detected by the simultaneous increase in their absorption at 617 nm and those of their waves of reduction (R_2 , $E_{\frac{1}{2}} = -1.10$ V) and oxidation (O_1 , $E_{\frac{1}{2}} = -0.20$ V). Whatever the y values, sulfur was quantitatively recovered by the exhaustive

Table 1 Electrochemical and/or spectrophotometric characteristics of thiols RSH, disulfides RS₂R, RS⁻ and RS₂⁻ ions in N,N-dimethylacetamide- $E_{\frac{1}{2}}$ at a rotating gold disc electrode vs. reference Ag/AgCl, KCl sat. in DMA-N(Et)₄ ClO₄ 0.1 mol dm⁻³

R	$\frac{\text{RSH}}{E_{\frac{1}{2}}(\text{R})/\text{V}}$	RS ₂ R			RS ⁻			D C -
		λ_{max}/nm	ϵ_{max}/dm^3 mol ⁻¹ cm ⁻¹	$E_{\frac{1}{2}}(\mathbf{R})/\mathbf{V}$	λ _{max} /nm	ε_{max}/dm^3 mol ⁻¹ cm ⁻¹	$E_{\frac{1}{2}}(\mathrm{O})/\mathrm{V}$	$\frac{\text{KS}_2}{E_{\frac{1}{2}}(\text{O})/\text{V}}$
4-NO ₂ C ₆ H ₄ ^a		322	21 400	-0.62	507	30 000	+ 0.67	+ 0.27
2-NO ₂ C ₆ H ₄ ^a	-	362	8 500	-0.67	502	1 860	+0.55	+0.05
C ₆ H ₅ (1)	<u> </u>	260	4 100	-1.10	309	18 200	+0.20	-0.03
$4-CH_{3}C_{6}H_{4}(2)$	<u> </u>	260	6 000	-1.17	309	21 200	+0.22	+0.02
$C_6H_3CH_2(3)$	-1.63	260	1 850	-1.53	260	5 300	+0.06	-0.40
C,H,(4)	—	260	350	-1.75	260	5 400	-0.28	-0.45
$C_{3}H_{7}(5)$	-1.72	259	400		259	5 300	-0.11	-0.43
$C_4H_9(6)$	-1.75	259	400		260	5 300	-0.08	-0.42
sec-CAHo(7)	-1.70	257	320		257	5 400	-0.10	-0.35
$tert-C_4H_9(8)$	- 1.80	257	250	-	257	5 100	-0.18	-0.35

^a Values previously determined.^{2.12}

electrolysis of the solutions at an anodic potential (E = +0.20 V).

However, with the exception of $R = tert-C_4H_9$, A_{617} changed with time with each addition of sulfur, as reported in Fig. 4 for propylthiolate ions (same experimental conditions as given for Figs. 1 and 2): after a fast increase in concentration, $[S_3^{*-}]$ decreased (curves 1 and 2; $y \leq 2$), or increased (curve 3, y > 2), more slowly with R = alkyl than with R = aryl. The variations in concentrations during spectra recordings (t = 15 s) were insignificant. The total concentration X_T of sulfur in the oxidation state $S_3^{\pm-}$ [*i.e.* S_3^{*-} and $S_6^{2^-}$ ions in equilibrium (9)] was calculated from A_{617} (or A_{675}) measurements giving $[S_3^{*-}]$, and $[S_6^{2^-}]$ by the use eqn. (14) and (10). Comparing $3X_T$ and $[S]_{ad}$, it was possible to show that sulfur ($[S]_R$) was mainly consumed by RS^- to give polysulfide ions RS_x^- , with an average \bar{x} value obtained from reaction (13) and conservation equations [eqns. (15)–(18)].

$$X_{\rm T} = [{\rm S_3}^{\cdot -}] + 2[{\rm S_6}^{2-}] \tag{14}$$

$$[S]_{R} = [S]_{ad} - 3X_{T}$$
(15)

$$X_{\rm T} = 2[{\rm RS}_2 {\rm R}] \tag{16}$$

$$[RS_x^{-}]_T = [RS^{-}]_o - X_T$$
(17)

$$\bar{x} - 1 = [S]_{R} / [RS_{x}]_{T}$$
 (18)

(a) With $\bar{x} < 2$, and as soon as traces of sulfur (y < 1/50) were added, the oxidation wave of RS⁻ ions ($E_{\frac{1}{2}} = -0.11$ V) totally shifted over towards more cathodic potentials (curve 2, Fig. 3, $E_{\frac{1}{2}} = -0.43$ V) as observed with aromatic thiolates.² RS₂⁻ ions oxidize into RS₂R faster than RS⁻ via the electrocatalytic process given by reactions (19) and (20). This

$$2RS^{-} + S_2 \longrightarrow 2RS_2^{-}$$
(19)

$$2RS_2^- - 2e^- \longrightarrow RS_2R + S_2$$
(20)

mechanism was previously tested by the electrolysis of a solution of 2-NO₂C₆H₄S⁻ ions ($\lambda_{max} = 502$ nm) in the presence of sulfur at y = 0.41.² As long as $[ArS^-]_T = [ArS^-] + [ArS_2^-]$ was greater than $[S]_{ad}$, $[ArS_2^-]$ ($\lambda_{max} = 681$ nm) remained constant as a result of the regeneration of sulfur [reaction (20)]. ArS₂⁻ ions react faster than ArS⁻ towards alkyl halides in DMA.⁹ The S-S bond does not transmit the conjugation,¹⁰ so the anionic charge could be supposed to be more localized on the terminal S in ArS₂⁻. The same phenomena [reactions (19) and (20)] with both alkyl and aryl RS⁻ or RS₂⁻ species may be rather explained by the ' α -effect'¹¹ in RSS⁻, due to the unshared electron pairs on the sulfur atom

Fig. 5 Variation in $\varepsilon_{ap} = A_{460}/I[RS_x^{-1}]_T$ as a function of \bar{x} during the addition of sulfur to propylthiolate ions

adjacent to the nucleophilic centre of RS⁻. Half-wave potentials for RS₂⁻ ions which were measured at $\bar{x} = 2$ are listed in Table 1. $E_{\pm}(R)$ of disulfides RS₂R and $E_{\pm}(O)$ of RS⁻ and RS₂⁻ species evolve with the nature of R in agreement with the electronic effects. Diethyldisulfide probably contains traces of sulfur; this would explain the more cathodic value $E_{\pm}(O)$ for $C_2H_5S^-$. In the course of the successive additions of sulfur, with R = alkyl and $\bar{x} \le 2$ the evaluation of concentrations when A_{617} quickly reached a maximum value showed that $\Delta RS_x^{-}/\Delta X_T \approx 2$: according to reactions (13) and (19), about $\frac{1}{3}$ of the thiolate ions oxidizes into RS₂R and $\frac{2}{3}$ goes to RS_x⁻ species ($\bar{x} = 2$).

(b) With $\bar{x} > 2$, RS_x⁻ ions are characterised by the growth of a VIS absorption band ($\lambda_{max} \approx 460-470$ nm, curves 5-7, Fig. 2) and their oxidation wave shifts again, but towards anodic potentials, close to the RS⁻ one. With R = alkyl (3-8), the specific absorptions A_{λ} of RS_x⁻ species were studied as a function of \bar{x} at 15 wavelengths between 260 and 600 nm. For each of them, the absorptions of RS₂R, S₃⁻ and S₆²⁻ which were estimated from their concentrations, and spectrophotometric characteristics (Fig. 1) were substracted from the measured A values. The evolution of the molar apparent absorbance, $\varepsilon_{ap} = A_{\lambda}/l[RS_x^{-}]_T$ versus \bar{x} is represented in Fig. 5 for $\lambda = 460$ nm and R = C₃H₇. Whatever λ and R, the variations $\varepsilon_{ap} = f(\bar{x})$ were linear between entire \bar{x} values. This important result implies the quantitative and successive formation of RS_x⁻ species (x = 2-5) as summarized by reaction (21). The molar absorptions ε_x , which were deduced, satisfy eqn. (22), with x

$$RS_{x-1} + \frac{1}{2}S_2 \longrightarrow RS_x^{-}$$
(21)

$$\varepsilon_{ap} = \bar{x}(\varepsilon_{x+1} - \varepsilon_x) + (x+1)\varepsilon_x - x\varepsilon_{x+1}$$
(22)

Fig. 6 Calculated UV–VIS spectra $(\varepsilon_x/dm^3 mol^{-1} cm^{-1})$ of propylthiolate (1) and polysulfide ions RS_x^{-} , x = 2 (2); 3 (3); 4 (4); 5 (5)

Table 2 Spectrophotometric characteristics of RS_x^- ions (x = 1-5) at 330 or 360 and 460 nm in dimethylacetamide

		$\varepsilon_{\rm x}/{\rm dm^3~mol^{-1}~cm^{-1}}$							
R ^a	λ/nm	RS-	RS ₂ ⁻	RS ₃ ⁻	RS4 ⁻	RS5 ⁻			
1	360	550	4000	Ь	b				
	460	-		400	900	-			
2	360	1100	4100	3300	3900				
	460		-	250	800				
3	360	200	900	1400	2600	2900			
	460	-	~ 40	200	900	1600			
4	330	250	1600	2400	3600	b			
	460	—	100	300	800	b			
5	330	100	1100	2000	3700	4400			
	460	-	~ 50	250	850	1500			
6	330	200	1300	2000	3700	b			
	460		100	350	850	b			
7	330	100	950	2000	3000	b			
	460		~ 50	250	1000	b			
8	330	500	1200	3000	3400	5200			
	460	—	100	200	750	1300			

^a 4-NO₂C₆H₄S₂⁻: $\lambda_{sh} = 600 \text{ nm} (\varepsilon = 11\ 000 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$; 2-NO₂C₆H₄S₂⁻: $\lambda_{max} = 681 \text{ nm} (\varepsilon = 5200 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$, from ref. 2. ^b ε_x values uncalculated.

(entire) $< \bar{x} < (x + 1)$. The UV-VIS spectra of $C_3H_7S_x^-$ ions (x = 1-5) so obtained have been reported in Fig. 6. The absorption generally increases with x in the spectral regions UV $(\lambda_{max} 320-360 \text{ nm})$ and VIS $(\lambda_{max} 450-470 \text{ nm})$. The analogous results concerning the alkylpolysulfide ions are summarized for two wavelengths ($\lambda = 330$ and 460 nm) in Table 2.

(c) With $\bar{x} > 5$ (the experiments were only performed with R = benzyl, propyl and *tert*-butyl), the maximal VIS absorptions shift towards *ca.* 500 nm, $i(R_1)$ appears on voltammograms ($E_4 = -0.40$ V) and A_{617} slightly decreases; sulfur now reacts with S_3^{*-} leading to S_8^{2-} ions ($\lambda_{max} = 515$ nm) according to equilibrium (23) [=(7) + (9)]. The partial formation of RS_6^- could not be revealed.

$$2S_3^{-} + S_2 \rightleftharpoons S_8^{2-} \tag{23}$$

With aromatic groups 1 and 2 (R = C_6H_5 and 4- $CH_3C_6H_4$) the oxidation reaction (13) of RS⁻ was weaker than that with R = alkyl. When adding sulfur (y > 2), the solutions first became blue ($\lambda_{max} = 617$ nm, S₃⁻⁻ formation) then turned pale yellow ($\lambda_{max} = 470$ nm) in a few minutes. However the slope $\varepsilon_{ap} = f(\bar{x})$ smoothly varied at all the selected wavelengths (5 values for 1, 10 values for 2, between 300–600 nm), without the presence of sulfur ($\bar{x} < 4.5$) in solution [lack of $i(R_1)$]. This general evolution agrees with equilibriums (24), (25), (27) and

Fig. 7 Variation in spectra during the addition of dibenzyldisulfide to S_{3}^{1-} ions at $X_{T}^{\circ} = 2.12 \times 10^{-3} \text{ mol dm}^{-3}$. [RS₂R]_{ad}/ $X_{T}^{\circ} = 0(1)$; 0.125 (2); 0.25 (3); 0.56 (4); 1.42 (5); 4.30 (6)

(28) between the different species RS_x^- (x = 1-4). At fixed λ , approximate values of $\varepsilon_2(RS_2^-)$, $\varepsilon_3(RS_3^-)$ and $\varepsilon_4(RS_4^-)$ could be attained with eqn. (30) derived from eqn. (22).

$$RS^- + S_2 \Longrightarrow RS_3^-$$
 (24)

$$RS_3^- + RS^- \Longrightarrow 2RS_2^-$$
 (25)

$$K_4 = [RS_3^{-}][RS^{-}][RS_2^{-}]^{-2}$$
(26)

$$RS_2^- + S_2 \rightleftharpoons RS_4^-$$
 (27)

$$RS_4^- + RS_2^- \Longrightarrow 2RS_3^-$$
 (28)

$$K_5 = [RS_4^{-}][RS_2^{-}][RS_3^{-}]^{-2}$$
(29)

$$\lim. \frac{d\varepsilon_{ap}}{dx} = \varepsilon_{x+1} - \varepsilon_x$$
$$\bar{x} \rightarrow 1-3 \tag{30}$$

For $1 < \bar{x} < 2$, the supposed major species in solution were ArS^- , ArS_2^- and ArS_3^- . Their concentrations were estimated at first from corrected A_{λ} values, ε_x and conservation equations related to $[RS_x^-]_T$ and $[S]_R$. Better values of ε_x (see Table 2), and then of concentrations $[ArS_x^-]$ were deduced from iterative calculations at several other λ' wavelengths until linear plots of eqn. (31) could be produced. The following

$$\frac{(A_{\lambda}'/l - \varepsilon'_{1}[ArS^{-}])}{[ArS_{2}^{-}]} = \varepsilon'_{2} + \varepsilon'_{3}[ArS_{3}^{-}]/[ArS_{2}^{-}] \quad (31)$$

disproportionation constants K_4 (298 K) of aromatic RS₂⁻ ions have been determined (±10%): K_4 (1) = 0.06; K_4 (2) = 0.35. K_4 (2) is close to the value which was previously obtained ¹² when sulfur was added to a mixture of coloured 2-NO₂C₆H₄S⁻ ($\lambda_{max} = 502 \text{ nm}$) and 4-CH₃C₆H₄S⁻ ions, *i.e.* K_4 (2) = 0.43. 33% (1) and 55% (2) of ArS₂⁻ species dissociate into ArS⁻ and ArS₃⁻ when $\bar{x} = 2$.

The same method was applied to $2 < \bar{x} < 3$ and afforded more accurate coefficients ε_4 (Table 2) and approximate values $(\pm 20\%)$ of the disproportionation constants K_5 (298 K) of RS₃⁻ ions: K_5 (1) = 0.07; K_5 (2) = 0.05. The slow evolution of S₃⁻⁻ (Fig. 4) resulting from the partial

The slow evolution of S_3^{+-} (Fig. 4) resulting from the partial oxidation of RS^- [reaction (13)] led us to reinvestigate the reactivity of S_3^{+-} ions towards disulfides RS_2R , taking into account the possible formation of RS_x^- species.

Fig. 8 Evolution of voltammograms during the reaction of dibenzyldisulfide with $S^{\frac{1}{2}-}$ ions. Same conditions as for Fig. 7

Table 3 'Dissociation' constants K_6 (298 K) of RS₄⁻ ions. Ionic strength = 0.1 mol dm⁻³

R	1	2	3	4	5	6	7	8
$K_6/10^4 \text{ mol dm}^{-3}$	2.0	4.2	1.2	0.13	0.50	0.30	0.10	а
" No reaction.								

Table 4 Successive formation constants $[(mol dm^{-3})^{-1}]$ at 298 K of aromatic RS_x⁻ ions. Ionic strength = 0.1 mol dm⁻³

R	<i>K</i> (RS ₂ ⁻)	$K(RS_3^-)$	$K(RS_4^-)$	
$ \frac{4-NO_2C_6H_4}{2-NO_2C_6H_4} \\ C_6H_5 \\ 4-CH_3C_6H_4 $	$4.0 \\ 1.05 \times 10^{2} \\ 5.8 \times 10^{4} \\ 5.5 \times 10^{4}$	$\frac{-}{3.5 \times 10^{3}}$ 1.9 × 10 ⁴	$\frac{-}{2.4 \times 10^2}$ 9.5 × 10 ²	

Reactivity of disulfides RS_2R with $S^{\frac{1}{3}-}$ ions

Whatever the nature of \overline{R} (1–7), when RS₂R and S₃^{•-} were brought together in the ratio $\frac{1}{2}$, spectra and voltammograms recorded at equilibrium were the same as those obtained by mixing sulfur and thiolate ions in the proportion $y = [S]_{ad}/[RS^-]_o = 3$. Except for $(tert-C_4H_9)_2S_2$ (R = 8), which was practically unreactive at room temperature, with R = alkyl (3–7), the experimental results can be generally described as the reaction between dibenzyldisulfide and S₃^{•-} ions at $X_T^o =$ 2.12 × 10⁻³ mol dm⁻³ (spectra and voltammograms in Figs. 7 and 8). At this level of concentration the solutions reached a stable composition in less than 20 min, according to equilibrium (32). With the addition of RS₂R, A_{617} (S₃^{•-}) decreases to the

$$RS_2R + 2S_3^{-} \Longrightarrow 2RS_4^{-}$$
(32)

$$K_6 = [RS_2R] [S_3^{-}]^2 [RS_4^{-}]^{-2}$$
(33)

benefit of a new VIS band ($\lambda_{max} = 460 \text{ nm}$), with the occurrence of an isosbestic point at 512 nm. The absorption also increases in the spectral UV region 320–360 nm. The ratio $\Delta X_T / [RS_2R]_{ad}$ has initial values equal to 2:1 and then progressively drops down. At the same time, the reduction current $R_2 (E_4 = -1.10 \text{ V})$ of S_3^{*-} ions decreases in parallel with A_{617} while their O_1 wave ($E_4 = -0.20 \text{ V}$) diminishes to the benefit of the oxidation current of RS_x^{-} ions ($E_4 \approx +0.04 \text{ V}$). K_6 values (see Table 3) were easily deduced from A_{617} measurements and conservation equations in sulfur and RS_2R . The molar absorbances obtained for RS_4^{-} ions at 460 nm (Table 2) were in very good agreement with those obtained by the addition of sulfur to RS^{-} solutions.

With aromatic disulfides (R = 1,2), the solutions reached equilibrium in under 2 min. The ratio $\Delta X_T / [RS_2R]_{ad}$ was at first restricted to between 3 and 4. In both cases, S_3^{*-} ions were able to displace partially sulfur from ArS_4^- ions which were stabilised to a lesser degree than RS_4^- . Simultaneous reactions (32) and (34) have to be considered. The formation of S_8^{2-}

$$2RS_4^- + 2S_3^{--} \Longrightarrow 2RS_3^- + S_8^{2-}$$
(34)

$$K_{7} = [RS_{3}^{-}]^{2} [S_{8}^{2}] [RS_{4}^{-}]^{-2} [S_{3}^{*-}]^{-2}$$
(35)

explained the shift of λ_{max} from 460 nm (RS₄⁻, R = alkyl) to *ca.* 480 nm (RS_x⁻ + S₈²⁻). All the concentrations were calculated with eqns. (36)–(38) and by analysis of the spectra.

$$2[RS_2R]_{ad} = 2[RS_2R] + [RS_3^-] + [RS_4^-] (36)$$

$$X_{\rm T}^{\rm o} = X_{\rm T} + [{\rm RS}_3^{-}] + [{\rm RS}_4^{-}] + 2[{\rm S}_8^{2-}]$$
 (37)

$$3X_{\rm T}^{\rm o} = 3X_{\rm T} + 2[{\rm RS}_3^{-}] + 3[{\rm RS}_4^{-}] + 8[{\rm S}_8^{2-}]$$
 (38)

 $X_{\rm T}$ was again evaluated from A_{617} (or A_{675}), and A_{480} was expressed by eqn. (39) after substraction of S_3^{*-} ($\varepsilon = 90$ dm³

$$A_{480}/l = \varepsilon_3 [RS_3^{-}] + \varepsilon_4 [RS_4^{-}] + 3500 [S_8^{2-}]$$
(39)

 $\operatorname{mol}^{-1}\operatorname{cm}^{-1}$) and $\operatorname{S}_{6}^{2^{-}}$ ($\varepsilon = 2900 \operatorname{dm}^{3} \operatorname{mol}^{-1} \operatorname{cm}^{-1}$) absorbances. Constants K_{6} have been reported in Table 3, and K_{7} (298 K) have the following values ($\pm 20\%$): K_{7} (1) = 10 dm³ mol⁻¹; K_{7} (2) = 0.64 dm³ mol⁻¹. With the values of K_{1} , K_{2} and K_{3} for the equilibria between S₈ and S₂; S₈²⁻ and S₆²⁻; S₆²⁻ and S₃^{*-}, of K_{7} , K_{5} and K_{4} , the successive constants of formation of RS₂⁻, RS₃⁻, RS₄⁻] (R = 1, 2) were deduced and are listed in Table 4: $K(\operatorname{RS}_{2}^{-}) = [\operatorname{RS}_{2}^{-}] [\operatorname{RS}_{3}^{-}]^{-1}[\operatorname{S}_{2}]^{-\frac{1}{2}}$, $K(\operatorname{RS}_{3}^{-}) = [\operatorname{RS}_{3}^{-}]$

Discussion

The rates of reactions leading to equilibrium (32) were not

$$RS_2R + 2S_3^{-} \xrightarrow{f}{\underbrace{b}} 2RS_4^{-}$$
(32)

quantitatively examined in the present study. The electrochemical reduction of disulfides RS_2R is usually described in protic or aprotic media¹³ according to the mechanism (40)–(42). The

$$RS_2R + e^- \longrightarrow RS_2R^{*-}$$
 (40)

$$RS_2R^{\bullet} \longrightarrow RS^- + RS^{\bullet}$$
(41)

$$2RS' \longrightarrow RS_2R \tag{42}$$

intermediate anion radical RS₂R^{•-}, whose EPR detection has been reported in organic solvents,¹⁴ rapidly cleaves to give RS⁻ and the thiyl radical RS'; RS[•] undergoes dimerization at a rate which was roughly estimated at 10^9-10^{10} dm³ mol⁻¹ s⁻¹ in aqueous solutions.¹⁵ The indirect electrochemical reduction of RS₂R by homogeneous redox catalysis (SET) has been carried out in DMF, by the use of activated olefins¹⁶ or aromatic compounds [reaction (43)].^{7a.16} With S₃^{•-} ions, the monoelec-

$$RS_2R + A^{*-} \xrightarrow{k} RS_2R^{*-} + A$$
(43)

tronic transfer [reaction (44)] can be suggested as the ratedetermining step of reaction (32, f), favoured by the fast chemical follow-up reactions (41), (42) and (45). However

$$RS_2R + S_3^{\bullet} \xrightarrow{k(1)} RS_2R^{\bullet} + 3/2S_2 \qquad (44)$$

$$RS_2R^{-} \longrightarrow RS^{-} + RS^{-}$$
(41)

$$2RS' \longrightarrow RS_2R \tag{42}$$

$$RS^{-} + \frac{3}{2}S_2 \longrightarrow RS_4^{-}$$
(45)

dimeric $S_6^{2^-}$ ions in low concentrations are perhaps the $S_3^{1^-}$ effective reagents rather than $S_3^{\cdot -}$, as was established for the substitution of nitroaromatic halides¹⁷ or dehalogenation of *vic*-dibromides.¹⁸ The slow dissociation of RS_4^- affording the stable $S_3^{\cdot -}$ ion and the very reactive thiyl radical could be the initial step of reaction (32,b).

Reaction (44) appears to be similar to those involving the superoxide radical ion O_2^{*-} and disulfides RS_2R .¹⁹ The latter is faster in more polar solvents (pyridine, acetonitrile) than in less polar media (chloroforme, benzene).^{19c} Sterically hindered disulfides such as $(t-C_4H_9)_2S_2$ react at very low rates with both S_3^{*-} and O_2^{*-} ions (more than 30 h at room temperature¹⁹ with superoxide). After an initial nucleophilic attack of O_2^{*-} on their S–S bond, aryl and alkyl disulfides yield both sulfinate and sulfonate ions. Furthermore the reactions between electrogenerated thiolates and dioxygen in DMF afforded mixtures of disulfides RS_2R and sulfinates at a preparative scale in accordance with the following scheme.²⁰

$$RS^- + O_2 \longrightarrow RS^{\bullet} + O_2^{\bullet -}$$
 (46)

$$2RS^{\bullet} \longrightarrow RS_2R \tag{42}$$

$$RS' + O_2' \longrightarrow RSO_2^{-}$$
(47)

The thiyl radicals produced in reaction (46) dimerize [reaction (42)] or react with O_2^{+} [reaction (47)] to form the intermediate peroxylsulfenate RSOO⁻ before its rearrangement into sulfinate RSO2⁻. The formation of transient peroxysulfur species such as RSOO⁻ was proposed during the alkaline autooxidation of thiols in *tert*-butyl alcohols²¹ and confirmed by Oae *et al.*^{19b} by the use of trapping agents added to the reactions of organic sulfur compounds with O_2^{+} ions: 'when thiol is oxidized, much of the reaction goes through direct oxidation to the peroxysulfenate and only a fraction *via* thiyl radical formation of disulfide'.²² It can be conceived that sulfur reacts with thiolate ions in a similar process.

$$S_8 \rightleftharpoons 4S_2$$
 (4)

$$RS^{-} + S_2 \longrightarrow RS^{\bullet} + S_2^{\bullet -}$$
(48)

$$2RS' \longrightarrow RS_2R \tag{42}$$

$$RS' + S_2'^- \longrightarrow RS_3^- \tag{49}$$

$$2S_2^{*-} \longrightarrow S_4^{2-} \tag{50}$$

$$S_4^{2-} + S_2 \longrightarrow S_6^{2-}$$
(51)

$$S_6^{2-} \rightleftharpoons 2S_3^{*-}$$
 (9)

The monoelectronic transfer [reaction (48)] implicates the S₂ molecule as the reactive form of sulfur rather than the cyclic S₈ one. The fast competing reactions (42), (49) and (50) entail the formation of disulfides RS₂R, RS_x⁻ and polysulfide ions. Unlike O₂⁻⁻, S₂⁻⁻ dimerizes into S₄²⁻ ions [reaction (50)] whose quantitative reaction (51) with sulfur was reported in many instances.²³ As shown at the beginning of our study, the oxidation remains weaker with R = aryl (and negligible with R = 2- or 4-NO₂C₆H₄) than with R = alkyl; the better stabilisation of the aromatic intermediate ArS⁻ radicals probably lower the rate of dimerization [reaction (42)]. S¹⁻ ions stemming from reaction (51) slowly reduce RS₂R produced in reaction (42) into RS₄⁻ [reaction (32)]. For $y = [S]_{ad}/[RS^-]_o \leq 2$ (curves 1, 2 of Fig. 4), RS⁻ (or RS₂⁻) ions can themselves react with RS₄⁻, with the successive formation of RS_x⁻ (R = alkyl, x = 2,3), the only thermodynamically stable species [reactions (28) and (25)]. For y values greater than 2-

$$RS_4^- + RS_2^- \longrightarrow 2RS_3^-$$
(28)

$$RS_3^- + RS^- \longrightarrow 2RS_2^-$$
 (25)

2.5, the 'instantaneous' formation of RS_4^- in excess of the concentrations at equilibrium (32) entails its slow dissociation into RS_2R and S_3^{*-} (growth of A_{617} , curve 3, Fig. 4). Reactions (24) [=(48) + (49)] and (25) are analogous to

Reactions (24) [=(48) + (49)] and (25) are analogous to those which were proposed in the course of thiol oxidation by the O₂/O₂^{*-} system.²¹ The addition of sulfur to ArS⁻ ions of

$$RS^- + O_2 \longrightarrow RSOO^-$$
 (52)

$$RSOO^- + RS^- \longrightarrow 2RSO^-$$
(53)

weaker reducing power yields species in equilibrium. (i) ArS⁻, ArS₂⁻, ArS₃⁻ [reactions (24) and (25) for 1 < y < 2]; ArS₂⁻, ArS₃⁻ ArS₄⁻ [reactions (27) and (28) for 2 < y < 3] with R = 1, 2; (ii) ArS⁻/ArS₂⁻ only with R = 2- or 4-NO₂C₆H₄², the thiolates being even more stabilized.

More generally, the affinity of RS⁻ ions for sulfur is analogous to that of many other 'S-nucleophiles'. The thiophilicity⁵ of various Y⁻ anions in protic media or triarylphosphines in non-polar solvents was found to be in the reactivity order:^{5,24} $C_2H_5S^- > C_6H_5S^- > Ar_3P > CN^-$ > SO₃²⁻ > N₃⁻, from their reactions on unsymmetrical RSSR' disulfides, the more stable R'S⁻ thiolate being displaced [reaction (54)]. A close correlation was established for some

$$RSSR' + Y^{-} \Longrightarrow RSY + R'S^{-}$$
(54)

 Y^- ions between their ease of oxidation to Y-Y and their thiophilicity.²⁵ With elemental sulfur, the same species (*e.g.* CN^- and SO_3^{2-}) give the corresponding thioanions according to the mechanism proposed by Foss²⁵ and Bartlett and coworkers²⁶ [reactions (55) and (56)]. The nucleophilic attack

$$S_8 + Y^- \xrightarrow{k} Y - S_7 - S^-$$
(55)

$$Y - S_7 - S^- + 7Y^- \longrightarrow 8YS^-$$
(56)

[reaction (55)] of Y^- on cyclic S_8 with ionic scission of the S–S bond is assumed to be the rate-determining step. The highly reactive intermediate would then be rapidly and successively degradated by additional Y^- ions.

With the same stoichiometry, we recently established⁴ that reactions between triarylphosphines and sulfur in DMA were first-order in each reactant Ar_3P and S_2 , and we proposed a very different pathway [reactions (4), (57) and (58)]. The

$$S_8 \rightleftharpoons 4S_2$$
 (4)

$$Ar_{3}P + S_{2} \xrightarrow{k} Ar_{3}P^{+}SS^{-}$$
 (57)

$$Ar_{3}P^{+}SS^{-} + Ar_{3}P \longrightarrow 2Ar_{3}PS$$
 (58)

reactions which were performed in the present work involve the initial monoelectronic transfer [reaction (48)]. We think that the reactions of the different 'S-nucleophiles' towards the S-S bond of sulfur and disulfides RS_2R' could also be thought to occur via similar redox reactions [reactions (59)–(61) and (62)–

$$Y^- + S_2 \longrightarrow Y^* + S_2^{*-}$$
 (59)

$$Y' + S_2' \longrightarrow YS_2^- \tag{60}$$

$$YS_2^- + Y^- \Longrightarrow 2YS^-$$
 (61)

$$\mathbf{Y}^{-} + \mathbf{RS}_{2}\mathbf{R}' \longrightarrow \mathbf{Y}^{*} + \mathbf{RS}_{2}\mathbf{R}'^{*-} \tag{62}$$

$$RS_2 R''^- \longrightarrow RS' + R'S^-$$
(63)

$$RS' + Y' \longrightarrow RSY$$
(64)

(64)]. The key redox system $S_2/S_2^{\bullet-}$ (analogous to the $O_2/O_2^{\bullet-}$ one) in reaction (59) is implied rather than the 'SN₂' opening of cyclic S₈. We believed that the same species were involved in the first step of the electrochemical reduction of sulfur in aprotic

$$S_2 + e^- \longrightarrow S_2^{--}$$
 (65)

media.⁴ $S_2^{\cdot-}$ ions were characterized in HMPA,²⁷ with a thorough comparison of the force constants, harmonic frequencies and anharmonicity constants for diatomic sulfur and oxygen species X_2 and $X_2^{\cdot-}$. Reaction (51) of the dimeric form $S_4^{\cdot 2-}$ with sulfur can be regarded as another example of reactions (59) and (60). Other reactions between the Y⁻ species

$$S_4^{2-} + S_2 \longrightarrow S_4^{*-} + S_2^{*-}$$
(66)

$$S_4^{\bullet^-} + S_2^{\bullet^-} \longrightarrow S_6^{\bullet^-}$$
 (67)

and sulfur, with concurrent couplings of intermediates such as RS' and S_2^{*-} are at present carried out in our group.

Experimental

Materials and equipment

Disulfides RS₂R (R = 1-4) and thiols (R = 3, 5-8) were obtained from Aldrich and used as received (purity > 98%). The purification of N,N-dimethylacetamide (Aldrich) and its storage after addition of tetraethylammonium perchlorate (Fluka, 0.1 mol dm⁻³) as supporting electrolyte has been reported elsewhere.⁶ Electrochemical and spectrophotometric equipment, as well as the thermostatted ($25 \pm 0.5 \,^{\circ}$ C) flow-through cell, were the same as previously described.⁴ A rotating gold disc (diameter = 2 mm; 1000 rev min⁻¹) was used as working electrode. The counter electrode was a gold wire in a separated compartment. The potentials were expressed in comparison to the reference electrode Ag/AgCl, KCl saturated in DMA-N(Et)₄ClO₄ 0.1 mol dm⁻³. All experiments were performed under a dry nitrogen atmosphere.

Generation of RS⁻ ions and S^{$\frac{1}{3}$ ⁻ species}

Solutions of RS⁻ ions (V = 40 cm³) were generated at concentrations near 2×10^{-3} mol dm⁻³ by reduction at a controlled potential on a large gold grid electrode of disulfides or thiols [eqns. (11) and (12)]. The molar absorbances of the RS⁻ species (Table 1) were determined in the course of their quantitative electrolysis at fixed *E* values on their well defined anodic wave. Definite volumes ($V_{max} = 5$ cm³) of a 'concentrated' sulfur solution at 9.0 × 10⁻³ mol dm⁻³ (close to saturation in DMA at 25 °C) were progressively added to the thiolate solutions.

 $S^{\frac{1}{2}-}$ solutions were prepared before addition of RS_2R by electroreduction of sulfur on the plateau of its second reduction wave R_2 . When the absorbance reached a maximum at 617 nm, $S^{\frac{1}{2}-}$ ions $(S_3^{--} \rightleftharpoons S_6^{-2-})$ were the only species in solution, according to the overall stoichiometry of reaction (68). All

initial concentrations $X_{T^0} = [S_3^{\bullet -}] + 2[S_6^{2^-}]$ were included between (2–3) × 10⁻³ mol dm⁻³. X_{T^0} values were obtained from A_{675} measurements. At this wavelength $S_3^{\bullet -}$ ions are the only absorbing species⁴ ($\varepsilon_{675}^3 = 1825$ dm³ mol⁻¹ cm⁻¹).

References

- I R. Steudel and M. Kustos, in *Encyclopedia of Inorganic Chemistry*, ed. R. B. King, Wiley, Chichester, 1994, vol. 7, pp. 4009–4038 and refs. cited therein.
- 2 M. Benaïchouche, G. Bosser, J. Paris, J. Auger and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 31.
- 3 J. Paris, G. Bosser and V. Plichon, Electrochim. Acta, 1986, 31, 457.
- 4 G. Bosser and J. Paris, New. J. Chem., 1995, 19, 391 and refs. cited therein.
- S (a) A. J. Parker and N. Kharasch, Chem. Rev., 1959, 59, 583; (b)
 A. J. Parker and N. Kharasch, J. Am. Chem. Soc., 1960, 82, 3071.
- 6 J. Paris and V. Plichon, Electrochim. Acta, 1981, 26, 1823.
- 7 (a) J. Simonet, M. Carriou and H. Lund, *Liebigs Ann. Chem.*, 1981, 1665; (b) M. Liu, S. J. Visco and L. C. De Jonghe, *J. Electrochem. Soc.*, 1989, **136**, 2570.
- 8 (a) F. Magno, G. Bontempelli and G. Pilloni, J. Electroanal. Chem., 1971, **30**, 375; (b) J. R. Bradbury, A. F. Masters, A. C. McDonell, A. A. Brunette, A. M. Bond and A. G. Wedd, J. Am. Chem. Soc., 1981, **103**, 1959.
- 9 M. Benaïchouche, G. Bosser, J. Paris and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 1421.
- 10 S. Kawamura, T. Horii and J. Tsurugi, J. Org. Chem., 1971, 36, 3677.
- 11 J. E. Dixon and T. C. Bruice, J. Am. Chem. Soc., 1972, 94, 2052 and refs. cited therein.
- 12 J. Robert, M. Anouti, G. Bosser, J. L. Parrain and J. Paris, J. Chem. Soc., Perkin Trans. 2, 1995, 1639.
- 13 (a) W. Stricks, J. K. Frischmann and R. G. Mueller, J. Electrochem. Soc., 1962, 109, 518; (b) J. K. Howie, J. J. Houts and D. T. Sawyer, J. Am. Chem. Soc., 1977, 99, 6323.
- 14 M. A. Cremonini, L. Lunazzi and G. Placucci, J. Chem. Soc., Perkin Trans. 2, 1992, 451.
- 15 Z. Hoffman and E. Hayon, J. Am. Chem. Soc., 1972, 94, 7950.
- 16 C. Degrand and H. Lund, C. R. Acad. Sci. Paris, 1980, 291, 295.
- 17 M. Benaïchouche, G. Bosser, J. Paris and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1991, 817.
- 18 G. Bosser and J. Paris, J. Chem. Soc., Perkin Trans. 2, 1992, 2057.
- (a) T. Takata, Y. H. Kim and S. Oae, *Tetrahedron Lett.*, 1979, 9, 821;
 (b) S. Oae, T. Takata and Y. H. Kim, *Bull. Chem. Soc. Jpn.*, 1981, 54, 2712;
 (c) S. Oae, T. Takata and Y. H. Kim, *Tetrahedron*, 37, 37.
- 20 C. Degrand and H. Lund, Acta Chem. Scand., Ser. B, 1979, 33, 512.
- 21 H. Berger, Rec. Trav. Chim, 1963, 82, 773.
- 22 S. Oae, Organic Sulfur Chemistry: Structure and Mechanism, CRC Press, Ann Arbor, 1991, p. 220.
- 23 (a) F. Seel, H. J. Güttler, G. Simon and A. Wieckowski, Pure Appl. Chem., 1977, 49, 45; (b) R. Rauh, F. Shuker, J. Marston and S. Brummer, J. Inorg. Nucl. Chem., 1977, 39, 1761 and refs. cited therein.
- 24 S. Oae, Organic Sulfur Chemistry: Structure and Mechanism, CRC Press, Ann Arbor, 1991, p. 119-134 and refs. cited therein.
- 25 O. Foss, in Organic Sulfur Compounds, ed. N. Kharasch, Pergamon Press, London, 1959, vol. 1, pp. 83-95.
- 26 (a) P. D. Bartlett and G. Meguerian, J. Am. Chem. Soc., 1956, 78, 3710; (b) P. D. Bartlett and R. E. Davis, J. Am. Chem. Soc., 1958, 80, 2513.
- 27 R. J. H. Clark and D. G. Cobbold, Inorg. Chem., 1978, 17, 3169.

Paper 6/00732E Received 31st January 1996 Accepted 29th May 1996